As part of last week's 2020 New York Climate Week, Credit Suisse and Dynamo Energy Hub co-hosted an informative online panel in collaboration with IBM. The panel, titled Cleantech, Collaboration and Climate Action: Driving the Clean Energy Transition Through COVID-19, brought together industry leaders to discuss their experiences and insights on trends over the previous — very disruptive — six months.
Topics: clean energy, climate change, COVID-19, Cleantech, New York Climate Week
From mainstream media to social media, the world is abuzz with the topic of climate change. A simple Google search on the phrase today yielded 1,100,000,00 results, and typing “gret” into Google is all it takes to bring up 107 million stories about Greta Thunberg. This 16-year-old Swedish environmental activist whose lone mission to protest climate change outside the Swedish Parliament has ignited a flame within millions of young people from more than 100 countries who have joined her with demands for climate action and a cry to “listen to the scientists.”
Even those associated with the oil industry are taking up the charge. For example, the former CEO of BP, Lord John Browne, is speaking globally about the need to clean up the atmosphere and reduce reliance on fossil fuels. His new book “Make, Think, Imagine” considers whether our demand for energy has driven the Earth’s climate to the edge of catastrophe and suggests that the same spark that triggers innovation can be used to counter its negative consequences and that it is time to “listen to the engineers.”
Topics: renewable energy, clean energy, Electric vehicles, energy storage, climate change
I recently reviewed an EPRI document that discussed storage, and by far the largest size storage systems were pumped storage plants. I wondered why they did not include hydro (non-pumped) storage, as this form of storage is far larger than any other form of storage that is available on the grid now.
Parts of North America, but sadly not all of it, are blessed with mountainous territory that has many rivers and streams that run downhill, and many of these have been harnessed for electricity production. While not specifically intended as storage plants when built, the value of their storage may well turn out to be larger than the value of the electricity that they may produce.
Consider a hydro dam that is 35 M in height with a reservoir that is 10 km2. Discharging the top 1 M of water through a generating station (90% efficient) would release almost 840 MWh of stored energy. This is a small hydro plant, with a small reservoir behind it, yet the storage is almost 840 MWh/M of depth that is drawn from the forebay. That is in addition to the electrical energy generated for use.
So how does a utility that has no pumps manage to store and return energy? The process is both simple and efficient.
Topics: distributed energy resources, battery storage, renewable energy, climate change, hydro
There is no doubt that we are facing real problems with climate, fossil fuels and carbon emissions, but as we look to solve these problems, I think that we need to look carefully at the underlying facts, rather than focusing (as some do) on the short-term elimination of fossil fuel.
- The biggest sources of emissions in the US are the generation of electricity from coal and transportation-related emissions (60% of which is for personal transportation). These two sources are responsible for more than 2/3 of total emissions. Canada is only slightly better, in that its electric system generates almost 60% of total energy with hydro, and nuclear is a large contributor to clean electricity as well. Canada’s petroleum industry ranks second, behind transportation.
- Electricity provides less than 20% of total energy, and the remainder is almost all fossil fuel. The average person gets fuel in three forms: electricity, natural gas and transportation fuel (gasoline or diesel fuel). Any major reduction in the direct delivery of fossil fuel will be expected to be replaced with electricity, and that may be a big challenge, given the fact that the electric grid at present delivers only about 20% of the total energy.
- Many people seem to think that if they can convert their current electricity use to solar energy, the problem will be solved. They tend to forget, however, about heating and transportation fuel. In most cases, the fossil fuel energy is far larger than the electrical energy delivered.
- I keep hearing that the problem is someone else’s fault – blame India, China, the oil industry or the government. We all need to look in the mirror – and recognize who the big users are. The fact is that North Americans are among the largest users of energy per capita in the world. As “Pogo” would have said, “We have seen the enemy, and it is us!”
There are two areas to look at: the supply of energy and the use of energy.
Topics: renewable firming, demand management, wind energy, clean energy, energy curtailment, energy consumption management, energy conservation, climate change
Utilities and regulators evaluate grid modernization initiatives using economic paradigms. They determine if investments at the grid edge are cost effective relative to investments made in traditional generation, transmission and distribution assets. The Intergovernmental Panel on Climate Change (IPCC) recently published a special report titled ‘Global Warming of 1.5°C’, with an accompanying Summary for Policymakers. The Summary stated that if global warming continues at its current rate, we will likely reach a 1.5°C increase in global mean surface temperature (GMST) compared to pre-industrial levels between the years 2030 and 2052. The Report and Summary provided a comparison of outcomes we can expect if GMST increases to 1.5°C versus 2.0°C. It also presented solutions to support limiting global warming to the smaller value.
Topics: global warming, climate change